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Abstract

We introduce a method for detecting the presence of time variation and instabilities in the

parameters of predictive regressions linking noisy variables such as stock returns to highly per-

sistent predictors such as stock market valuation ratios. Our proposed approach relies on the

least squares based squared residuals of the predictive regression and is trivial to implement.

More importantly the distribution of our test statistic is shown to be free of nuisance param-

eters, is already tabulated in the literature and is robust to the degree of persistence of the

chosen predictor. Our proposed method is subsequently applied to the predictability of monthly

US stock returns with the dividend yield, dividend payout, earnings-price, dividend-price and

book-to-market value ratios. Our results strongly support the presence of instabilities over the

1927-2013 period but also clearly point to the disappearance of these after the mid 50s.

Keywords: Predictability of Stock Returns, Structural Breaks, CUSUMSQ, Predictive Re-

gressions.
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1 Introduction

Models where quantities such as stock returns are regressed on lagged values of predictors such as

valuation ratios, interest rates, investor sentiment or other economic and financial variables have

been at the core of a vast body of applied and theoretical research in financial economics. The key

goal of such specifications is the detection of predictability with important implications for asset

pricing theories and the use of conditional asset pricing models which rely on the existence of such

predictors. Inferences in the context of these predictive regressions are complicated due to the joint

interaction of the highly persistent nature of the commonly used predictors (e.g. dividend yields,

price to earnings ratios) with endogeneity problems arising from the correlation of the innovations

of the predictors with the predictive regression errors. This has typically led to nonstandard

inferences and a growing literature aiming to develop valid and reliable inferences in such settings

(see Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and Moreira (2006)

and more recently Kostakis, Magdalinos and Stamatogiannis (2014) amongst numerous others).

In parallel to this methodological literature on inferences in predictive regressions it has also

been recognised that predictability itself may be a time varying phenomenon and that the impact

of predictors such as dividend yields, interest rates and others may be evolving over time. In their

comprehensive study on the predictability of the equity premium for instance Welch and Goyal

(2008) have documented significant instabilities in predictability as also highlighted in Rapach and

Wohar (2006), Timmermann (2008), Lettau and Van Nieuwerburgh (2008) and numerous others.

The sensitivity analysis conducted in a recent paper by Kostakis, Magdalinos and Stamatogiannis

(2014) also highlighted significant variations in test conclusions depending on whether one considers

pre or post 50s data.

Most existing methods used to assess time variation and breaks in the parameters of regres-

sion models are typically designed for purely stationary settings and are not necessarily suitable

for the specificities of predictive regressions. It is straightforward to show for instance that the

Brownian Bridge type asymptotics of the most commonly used SupWald type test of Andrews

(1993) would no longer be valid when considering nearly integrated predictors. In Rapach and

Wohar (2006) the authors used the standard SupWald based together with bootstrap based ap-

proximations to infer predictability on US return data. Even with methods specifically designed

to address the econometric difficulties characterising predictive regressions instabilities have been

mainly highlighted through ad-hoc sub-period analyses. In Kostakis, Magdalinos and Stamatogian-

nis (2014) the authors developed a method for testing predictability designed to be immune to the

degree of persistence of the predictors and through an ad-hoc sub-period implementation of their

methodology documented significant changes in predictability over particular periods.

Our goal in this paper is to propose a formal method for uncovering instability in predictive

regressions that is specifically designed to handle the presence of nearly integrated predictors in ad-
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dition to accommodating possible endogeneity in the form of contemporaneous correlations between

the innovations driving the predictors and the errors of the predictive regressions. Our method is

simple to implement and relies on a simple construct that uses the cumulated squared residuals

of a linear predictive regression. More importantly and unlike most of the literature that models

persistence via nearly integrated processes the limiting distribution of our proposed test statistic is

free of nuisance parameters, tabulated and does not depend on the unknown non-centrality param-

eter driving the degree of persistence of the predictors. Our method offers a straightforward and

easy to implement diagnostic tool for exploring potential instabilities prior to conducting further

inferences. When applied to the detection of instabilities in the context of the predictability of

aggregate US stock market returns it very clearly highlights a significant switch in predictability

that occurred near the mid 50s/early 60s after which time predictability vanishes.

The plan of the paper is as follows. Section 2 introduces our operating model, assumptions and

test statistic and obtains its large sample properties. Section 3 is a simulation study highlighting

the finite sample size and power properties of our procedure. Section 4 applies our methodology

to the predictability of aggregate US returns using the recently extended Goyal and Welch (2013)

dataset also considered in Kostakis, Magdalinos and Stamatogiannis (2013). Section 5 concludes.

2 A Cumulative Squared Residuals Based Test

Throughout this paper our operating model is given by the following predictive regression

yt+1 = α+ βxt−1 + ut+1 (1)

with the predictor xt modelled as a nearly integrated process so as to capture the frequently

observed high degree of serial correlation of commonly considered predictors

xt =
(

1− c

T

)
xt−1 + vt (2)

with c < 0 and ut and vt denoting stationary disturbances. The probabilistic properties of our

specification are summarised in the following set of assumptions.

ASSUMPTIONS: (i) vt = Ψ(L)εt with Ψ(L) =
∑∞

j=0 ψjL
j having Ψ(1) 6= 0, Ψ0 = 1 and absolutely

summable coefficients. (ii) wt = (ut, εt)
′ is a martingale difference sequence with respect to the

natural filtration Ft = σ(wt, wt−1 < . . .) such that E[wtw
′
t|Ft−1] = Σw ≡ {(σ2u, σuε), (σεu, σ2ε )} and

suptE[||wt||4+δ|Ft−1] <∞ for some δ > 0. (iii) ηt = u2t − σ2u is such that E[η2t |Ft−1] <∞.

The above assumptions are standard within the predictive regression literature (see for instance

Jansson and Moreira (2006), Campbell and Yogo (2006), Kostakis, Magdalinos and Stamatogiannis

(2013) and others) possibly with the exception of requiring the existence of sufficiently high order

moments for the errors driving the predictive regression. The latter are important in our context
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since our inferences will be relying on the variance of squared residuals themselves. The martingale

difference setting for ut is a natural choice since in most applications the null hypothesis is typically

understood to describe an efficient market in the sense of excess returns being a fair game. Letting

ût denote the least squares residuals estimated from (1) in what follows σ̂2u will denote the residual

variance. Setting η̂t = û2t − σ̂2u we also let φ̂2 denote the variance of η̂t. Note that under an NID

setting for the u′ts we have φ2 = 2σ4u. Throughout the paper we will also let k refer to the potential

location of a break-point in the parameters driving (1) and set k = [Tπ] with π denoting the break

fraction.

Our inferences about the potential presence of time variation in the predictive regression in (1)

will rely on the fluctuations of the squared residuals as captured by a CUSUM of squares type

quantity which we formulate as

CSQ = max
1≤k≤T

1

φ̂
√
T

∣∣∣∣∣
k∑
t=1

û2t −
k

T

T∑
t=1

û2t

∣∣∣∣∣ . (3)

Since the early work of Brown (1975) the use of CUSUM and CUSUM of squares types of test

statistics have had a long history in the changepoint literature and both statistics and their in-

numerable variants have been extensively used in applications in virtually all scientific fields. In

Xiao and Phillips (2002) for instance the authors used the CUSUM principle to develop a test

for detecting the presence of cointegration within a single equation setting while generalisations of

the properties of CUSUM of squares have been explored in Deng and Perron (2008a, 2008b) and

others. The idea behind a test statistic such as (3) is that any time variation within the predictive

regression will contaminate the standard least squares residuals and their squares and hence should

be detectable by analysing how û and û2t fluctuate. The following proposition introduces our first

result.

PROPOSITION 1. Under Assumptions (i)-(ii) and model (1)-(2) we have CSQ ⇒ supπ∈[0,1] |BB(π)|
with BB(π) denoting a standard Brownian Bridge.

An important and unique feature of our limiting result in Proposition 1 stems from the fact that the

unknown noncentrality parameter c characterising the degree of persistence of xt does not enter into

its expression, making the practical implementation of our approach particularly straightforward.

The limiting distribution of CSQ is given by the supremum of a Brownian Bridge and is well known

and extensively tabulated in the literature. We indeed have

P

(
sup
π∈[0,1]

|BB(π)| ≤ u

)
=

∞∑
j=−∞

(−1)je−2j
2u2 (4)

which can easily be used to construct suitable p-values (see Billingsley (1968)). Alternatively, the

1%, 5% and 10% critical values of the distribution are given by 1.63, 1.36 and 1.22 respectively.

We next explore the properties of the above test statistic when the model in (1)-(2) is truly

characterised by structural break type of instabilities. This is a particularly important issue in the
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context of a CUSUM of squares type statistic for which there is an extensive literature that discusses

its deficiencies in relation to its local power properties. Interestingly and as we demonstrate further

below our environment in (1)-(2) that involves a highly persistent regressor leads to fundamentally

different and significantly more favourable local power properties for CSQ compared to purely

stationary environments considered in the literature.

Operating within a purely stationary setting Ploberger and Kramer (1990) considered the local

power properties of CSQ and highlighted its trivial power in the sense of power asymptotically

converging to size for local deviations from the null (e.g. yt = βxt−1 + ut with βt = β + δ√
T
I(t >

k0)). More recently however, Deng and Perron (2008a), in their comprehensive study of the power

properties of CUSUM and CUSUM of quares tests argued that the usefulness and validity of such

tests should not be judged on the basis of their local power properties which are not indicative or

even relevant when dealing with finite samples. They further show that by considering non-local

deviations from the null the vast majority of the conclusions pertaining to the power of CSQ are

overturned. In what follows we address these issues and highlight the fact that in our specific

setting that involves a nearly-integrated predictor the concerns regarding local power need not be

regardless of whether one considers local shifts or more realistic fixed departures from the null of

linearity.

To illustrate some of the above points we present the outcome of a small Monte-Carlo experiment

in which we parameterise the predictive regression (ignoring intercepts for simplicity) yt = βtxt−1+

ut with βt = β + (δ/
√
T )I(t > k0) and contrast the local power properties of CSQ across a purely

stationary predictor (say xt = 0.2xt−1 + vt) and a significantly more persistent one as in (2) with

c = 1. Results are displayed in Table 1 below where we used β = 2 and δ = 3.

Table 1. Local Power of CSQ in Stationary and Persistent Environments

T=100 T=200 T=400 T=800 T=2500

π0 = 0.25

Stationary xt 2.30% 3.50% 3.80% 4.80% 4.80%

Persistent xt 16.20% 30.30% 43.50% 60.30% 80.80%

π0 = 0.50

Stationary xt 2.10% 3.10% 3.30% 4.70% 5.00%

Persistent xt 8.00% 20.60% 37.40% 56.60% 78.70%

π0 = 0.75

Stationary xt 2.40% 2.90% 3.30% 5.30% 5.20%

Persistent xt 27.80% 45.60% 58.60% 71.30% 87.40%

The above figures corroborate some of the findings of the existing literature (e.g. Ploberger and

Kramer (1990), Deng and Perron (2008a)) in addition to highlighting the distinct and favourable
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behaviour of CSQ under a persistent predictor. It is clear that within a stationary setting the

CUSUM of squares test has trivial power (note that we used a 5% nominal size when assessing

empirical power) while under our nearly integrated setting power increases with the sample size

and converges to 1. Within this persistent context another interesting point we can infer from

Table 1 is the sensitivity of local power to the location of the true break point. Power appears

to be weakest when the true break point is located at the middle of the sample (i.e. π0 = 0.5), a

phenomenon also highlighted in Deng and Perron (2008a).

Our next goal is to offer a more formal analysis of the properties highlighted above. Letting

x̃t = (1, xt−1)
′ and θ = (α, β)′ we rewrite (1) as

yt = θ′tx̃t−1 + ut

θt = θ +
δ√
T
I(t > k0) (5)

with k0 denoting the location of the true break point.

If xt is taken to be a purely stationary predictor it is straightforward to show that under local

departures as in (5) we continue to have∑T
t=1 û

2
t√

T
=

∑T
t=1 u

2
t√

T
+ op(1) (6)

and similarly
∑
û2t /T

p→ σ2u and
∑
û4t /T

p→ E[u4t ] so that the limiting behaviour of CSQ remains as

in Proposition 1. Naturally and as discussed in Deng and Perron (2008a) this is no longer the case

when considering the more realistic setting of fixed and sufficiently large departures from the null.

More importantly as we consider a nearly integrated predictor as in (2) and regardless of whether

we operate locally or not our test statistic is characterised by non-trivial power. Indeed, we now

have ∑T
t=1 û

2
t√

T
=

∑T
t=1 u

2
t√

T
+Op(

√
T ) (7)

and
∑
û2t /T

p→ σ2u +Op(1) and
∑
û4t /T = Op(1) so that CSQ = Op(

√
T ). This result is formalised

in the following proposition.

PROPOSITION 2. Under Assumptions (i)-(ii) and model (5) we have T−
1
2CSQ = Z∞(c, π0, δ)

with Z∞(.) denoting a stohastically bounded Op(1) random variable.

The key point of the above Proposition is the divergence of the test statistic under a time varying

setting parameterised as in (5) so as to ensure the test has nontrivial power. The particular

expression of the stochastically bounded term is not interesting per se and is given by a random

variable that depends on the noncentrality parameter c, the location of the true break point/fraction

(π0 = k0/T ) and of course the magnitude of δ.
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3 Finite Sample Performance: Size and Power Properties

We initially illustrate the finite sample size properties of our test statistic whose asymptotic be-

haviour has been established in Proposition 1. Our DGP is given by (1)-(2) with vt = φvvt−1 + εt.

We let wt = (ut, εt)
′ denote a bivariate iid Gaussian random vector with nondiagonal covariance

Σw = {(1, σuε), (σuε, 1)}. We set (α, β) = (0.15, 0.25), φv = 0.5 and σuε = −0.3. In order to high-

light the robustness of our results to the persistence parameter we repeat all our simulations for

c ∈ {1, 10, 40} across T = 200, 600, 1000, 1400, 1800. Results are presented in Table 2 below where

the first four columns display the finite sample and asymptotic critical values of the null distribution

of CSQ while the remaining columns display the associated empirical sizes for a selection of three

nominal sizes.

Table 2. Critical Values and Empirical Size Properties of CSQ

10% 5% 2.50% 1% 10% 5% 2.50%

c=1 c=1

T=200 1.165 1.294 1.385 1.525 7.7 3.2 1.4

T=600 1.207 1.348 1.466 1.613 9.1 4.6 2.2

T=1000 1.186 1.319 1.440 1.607 8.2 4.2 2.1

T=1400 1.199 1.321 1.454 1.586 8.7 4.2 2.1

T=1800 1.208 1.348 1.469 1.612 9.3 4.8 2.3

T=∞ 1.220 1.360 1.480 1.630 10.0 5.0 2.5

c=10 c=10

T=200 1.167 1.305 1.384 1.530 7.6 3.1 1.4

T=600 1.206 1.342 1.469 1.613 9.0 4.7 2.2

T=1000 1.187 1.324 1.445 1.605 8.2 4.3 2.1

T=1400 1.197 1.319 1.457 1.586 8.7 4.2 2.1

T=1800 1.210 1.348 1.463 1.618 9.2 4.8 2.3

T=∞ 1.220 1.360 1.480 1.630 10.0 5.0 2.5

c=40 c=40

T=200 1.164 1.301 1.383 1.530 7.6 3.2 1.4

T=600 1.207 1.347 1.459 1.609 9.1 4.7 2.3

T=1000 1.186 1.332 1.445 1.604 8.2 4.3 2.0

T=1400 1.196 1.319 1.454 1.588 8.5 4.0 2.1

T=1800 1.208 1.345 1.463 1.604 9.3 4.8 2.3

T=∞ 1.220 1.360 1.480 1.630 10.0 5.0 2.5

We note that the empirical size estimates remain virtually identical across the different magni-

tudes of the near persistence parameter c for all sample sizes as expected by our theory. In small
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samples the test statistic suffers from a mild undersizeness which progressively corrects as we move

towards sample sizes such as T = 600 and beyond.

For our power experiments we consider θ = (0.15, 0.25)′ with δ = (2, 2)′ and the departures

from the null are parameterised as in (5). In order to highlight the influence of the location of the

break point on the power properties of our test we consider three alternative scenarios that place k0

early in the sample, late in the sample as well as its middle (e.g. π0 = 0.25, 0.50, 0.75). Results are

presented in Table 3 below where we used the critical values of Table 2 to evaluate size corrected

empirical powers.

Table 3. Power Properties (5% Nominal Size)

c=1 c=10 c=40

π0 = 0.25

T=200 36.4 11.0 5.2

T=600 61.6 24.1 6.4

T=1000 73.5 37.7 8.1

T=1400 80.0 50.2 11.7

T=1800 84.0 54.5 9.9

π0 = 0.5

T=200 32.2 6.5 5.2

T=600 62.2 11.6 4.3

T=1000 71.0 18.4 5.0

T=1400 81.5 26.7 5.9

T=1800 82.7 27.7 4.9

π0 = 0.75

T=200 55.1 12.9 5.7

T=600 76.3 28.8 7.4

T=1000 84.9 45.5 8.4

T=1400 89.7 58.8 13.1

T=1800 91.5 64.5 14.4

Our results in Table 3 clearly highlight the sensitivity of power to c and π0. For large values of

c (i.e. for regressors further away from the nearly integrated scenario) we note that the test has no

power as discussed above. It is particularly interesting to note how the power properties of CSQ

are significantly altered as we consider highly persistent regressors. Under this latter scenario we

note that power increases towards one as we increase T . It is also interesting to highlight the role

of the location of the true break point on power. We note for instance that power is overall similar

when π0 = 0.25 or π0 = 0.50 but tends to increase significantly when π0 = 0.75 i.e. when the break
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point is located later on in the sample. Overall, under a strongly persistent scenario (e.g. c = 1)

and sample sizes typically encountered in financial data CSQ appears to offer a useful diagnostic

tool.

4 Time Varying Return Predictability

We apply our methodology to the predictability of US equity returns with valuation ratios as re-

cently explored in Kostakis, Magdalinos and Stamatogiannis (2014) where the authors developed

a novel methodology designed to test the presence of predictability via a Wald type test of the

hypothesis β = 0 in (1). The key contribution of KMS was to propose an IV based Wald statistic

whose limiting distribution remains unaffected by the noncentrality parameter c driving the degree

of persistence of the predictor. Using monthly data spanning the period 1927-2011 the authors

documented a statistically and economically significant predictability of excess returns using the

dividend yield, earnings-price, dividend-price and book-to-market value ratios. At the same time

and through a sub-period analysis using the same methodology the authors highlighted the sensi-

tivity of their results to particular time periods and more specifically showed that virtually all of

the conventionally used predictors lose their predictive ability in a post 50s sample.

The robustness of our CSQ statistic to the magnitude of the noncentrality parameter c makes

it particularly suitable for diagnosing predictive instability in a simple way. It is also interesting

to point out that the mere finding of instability is itself evidence of predictability since it indicates

changes in the values of the parameters driving the predictive regression which cannot be zero in

both regimes.

The source of our data is an updated version of the monthly dataset used in Welch and Goyal

(2008) (see Goyal and Welch (2013)) as also considered in KMS and covers the period 1927:1-

2013:12. US market returns are proxied by the CRSP value-weighted returns in excess of the

1-month T-bill rate. The predictors we consider are the dividend yield (DY) expressed as the

natural log of dividends over lagged prices, the earnings price ratio (EP) expressed as the natural

log of earnings over prices, the dividend price ratio (DP) expressed as the natural log of dividends

over prices, the dividend payout ratio (DPO) expressed as the natural log of dividends over earnings

and finally the book-to-market ratio (BM) expressed as the natural log of book value over market

value. For each of the above predictors we have estimated a simple linear predictive regression as

in (1) and calculated the magnitude of CSQ as expressed in (3). Results are presented in Table 3

below where *** indicates rejection at 1% level, ** at 5% and * at 10%.

Table 3. CSQ Statistic (1.63(1%), 1.36(5%), 1.22(10%))
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1927-2013 1950-2013 1955-2013 1960-2013

DY 3.538*** 1.528** 1.283* 1.037

EP 3.458*** 1.503** 1.271* 1.032

DP 3.521*** 1.521** 1.278* 1.034

DPO 3.480*** 1.431** 1.243* 1.011

BM 3.583** 1.479** 1.265* 1.027

The above results demonstrate a strong presence of instability in all five of the predictive regressions

when considering the full sample period of 1927-2013. It is also clear however that this instability

vanishes as we exclude pre-mid 50s data. Looking at the 1955-2013 results for instance we note

that across all five predictors the CSQ statistic leads to a borderline rejection at 10% while when

considering the 1960-2013 period the computed test statistic is significantly below the 10% cutoff.

Our results fully corroborate the sensitivity analysis conducted in KMS and highlight the usefulness

of our procedure for uncovering instability in predictive regressions. The method is trivial to

implement, it relies on existing tabulated distributions and is robust to the nearly integrated nature

of predictors. Furthermore, it has non trivial power provided that the predictors are sufficiently

persistent.

5 Conclusions

We have introduced a method for uncovering time variation in the parameters of a predictive

regression that relies on a cumulative sum of squared least squares residuals. Besides its simplicity,

another important feature of our test statistic is the convenience of its limiting distribution that

does not depend on the noncentrality parameter used to model the persistent predictors and thus

making it a useful diagnostic tool when considering the use of predictive regressions. Numerous

extensions to this research are currently under investigation. A particularly interesting avenue is the

generalisation of our specification in (1) to a setting that includes multiple predictors with possibly

different degrees of persistence. A significantly more challenging extension could also involve the

coexistence of instabilities in both the conditional mean and error variances along the lines studied

in the earlier work of Pitarakis (2004).
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APPENDIX

In what follows we make extensive use of existing results on the large sample properties of sample moments of

highly persistent processes as in (2) without explicitly appealing to first principles. From Phillips (1987) for instance

it is well known that
∑[Tπ]
t=1 x

2
t−1/T

2 ⇒
∫ π
0
J2
c (r)dr ≡ q(0, π) (see also Sandberg (2009)) and

∑[Tπ]
t=1 xt−1ut/T = Op(1).

More generally, using the continuous mapping theorem and our assumptions on the finiteness of moments in (ii)-

(iii) we also have
∑[Tπ]
t=1 x

m
t−1/T

1+m
2 = Op(1),

∑[Tπ]
t=1 x

m
t−1ut/T

(1+m)/2 = Op(1),
∑[Tπ]
t=1 x

2
t−1u

2
t/T

2 = Op(1) and∑[Tπ]
t=1 xt−1u

3
t/T

3/2 = Op(1) also leading to T (β̂−β) = Op(1) and
√
T (α̂−α) = Op(1) (see Valkanov (2003) for explicit

expressions for these limiting distributions). The above large sample properties also directly imply that under model

(1)-(2) we have
∑T
t=1 û

4
t/T =

∑T
t=1 u

4
t + op(1) and

∑T
t=1 û

2
t/T =

∑T
t=1 u

2
t + op(1) ensuring that φ̂2 p→ φ2 ≡ [η2t ].

PROOF OF PROPOSITION 1: We have
∑k
t=1 û

2
t =

∑k
t=1 u

2
t + (θ̂− θ)′

∑k
t=1 xt−1x

′
t−1(θ̂− θ)−2

∑k
t=1 utx

′
t−1(θ̂− θ).

It is also convenient to introduce the normalising matrix DT = diag(
√
T , T ) so that we can write∑k

t=1 û
2
t√

T
=

∑k
t=1 u

2
t√

T
+

1√
T

[DT (θ̂ − θ)]′
(
D−1
T

k∑
t=1

xt−1x
′
t−1D

−1
T

)
DT (θ̂ − θ)−

2
1√
T

k∑
t=1

utx
′
t−1D

−1
T (DT (θ̂ − θ)) (8)

Given our chosen process in (2) and our results stated above it is clear that DT (θ̂ − θ) = Op(1) leading to∑T
t=1 û

2
t/
√
T =

∑T
t=1 u

2
t/
√
T + op(1). Next, the boundedness of maxkD

−1
T

∑k
t=1 xt−1x

′
t−1D

−1
T together with DT (θ̂−

θ) = Op(1) also ensures that T−1/2(DT (θ̂ − θ))′(maxkD
−1
T

∑
xt−1x

′
t−1D

−1
T )(DT (θ̂ − θ))

p→ 0. Finally combin-

ing with T−1/2 maxk |
∑k
t=1 utx

′
t−1(θ̂ − θ)DT |

p→ 0 we have maxk |
∑k
t=1 û

2
t/
√
T −

∑k
t=1 u

2
t/
√
T | p→ 0. Next, letting

KT (π) = (1/φ
√
T )
∑[Tπ]
t=1 (u2

t−σ2
u), assumptions (i)-(iii) ensure that an invariance principle holds with KT (π)⇒ B(π).

With CSQ = (φ/φ̂) supπ |KT (π)− πKT (1)|+ op(1) the result follows from the continuous mapping theorem.

PROOF OF PROPOSITION 2: For simplicity we consider a specification with no intercept so that the true DGP

is yt = βxt−1 + (δ/
√
T )xt−1I(t > k0) + ut while the residuals are obtained from the fitted model ût = yt − ρ̂xt−1

leading to ût = ut − (ρ̂ − β)xt−1 + (δ/
√
T )xt−1I(t > k0). From ρ̂ = β + (δ/

√
T )(
∑T
t=k0+1 x

2
t−1/

∑T
t=1 x

2
t−1) +∑T

t=1 utxt−1/
∑T
t=1 x

2
t−1 it follows that

√
T (ρ̂ − β) = δ(q(π0, 1)/q(0, 1)) + op(1) where q(π0, 1) ≡

∫ 1

π0
J2
c (r)dr and

q(0, 1) ≡
∫ 1

0
J2
c (r)dr. Applying suitable normalisations to û2

t leads to

1

T

T∑
t=1

û2
t ⇒ σ2

u + δ2
(
q(π0, 1)− q(π0, 1)2

q(0, 1)

)
(9)

so that within this local setting we have
∑T
t=1 û

2
t/
√
T = Op(

√
T ). Next, we consider the large sample behaviour of∑k

t=1 û
2
t for k ≤ k0 and k > k0 respectively. We have∑[Tπ]

t=1 û
2
t

T
⇒ πσ2

u + δ2
(
q(π0, 1)

q(0, 1)

)2

q(0, π) π ≤ π0 (10)

and ∑[Tπ]
t=1 û

2
t

T
⇒ πσ2

u + δ2
(
q(π0, 1)

q(0, 1)

)2

q(0, π0) + δ2q(π0, 1)

(
1− q(π0, 1)

q(0, 1)

)2

π > π0. (11)

Combining the above results establishes that |(
∑k
t=1 û

2
t/
√
T )− k

T

∑T
t=1 û

2
t | = Op(

√
T ). Proceeding as in Proposition

1 it is also straightforward to establish that under our local setting φ̂2 = Op(1), leading to the result that CSQ/
√
T =

Op(1).
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